Circle packing in a right isosceles triangle is a packing problem where the objective is to pack n unit circles into the smallest possible isosceles right triangle.
Minimum solutions (lengths shown are length of leg) are shown in the table below.[1] Solutions to the equivalent problem of maximizing the minimum distance between n points in an isosceles right triangle, are known to be optimal for n< 8.[2] In 2011 a heuristic algorithm found 18 improvements on previously known optima, the smallest of which was for n=13.[3]
Number of circles | Length |
---|---|
1 | 3.414... |
2 | 4.828... |
3 | 5.414... |
4 | 6.242... |
5 | 7.146... |
6 | 7.414... |
7 | 8.181... |
8 | 8.692... |
9 | 9.071... |
10 | 9.414... |
11 | 10.059... |
12 | 10.422... |
13 | 10.798... |
14 | 11.141... |
15 | 11.414... |